

Unnamed Tributary, Chickahominy River: Benthic TMDL Development

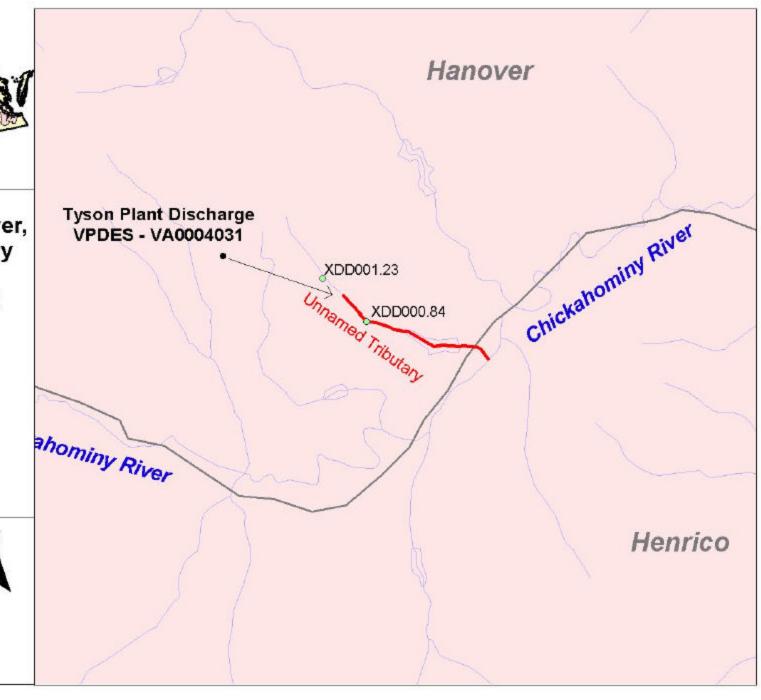
Technical Advisory Committee Meeting April 4, 2003

Project Team

George Mason University

Christian Jones
Jenny Cordrey

Teresa Divers
Jessie Parker
June Burton
Ting Dai
Clint Boschen


Chickahominy River, Unnamed Tributary

2004 Commitment

George Mason University

Biomonitoring & Assessment

- General Standard (9 VAC 25-260-20): "All state waters shall be free from substances...which are harmful to human, animal, plant, or aquatic life."
- EPA Rapid Bioassessment Protocol (RBP)
- Measurements of the benthic community. These "metrics" are used to determine the condition of the benthic community.
- Target Station vs. Reference Station (metric comparisons)
- Virginia Assessment Guidance: RBP score of moderately or severely impaired.

Benthic TMDL Development

<u>Problem</u>: Impaired streams do not support a healthy benthic macroinvertebrate community.

Questions:

- What factors are causing the problem?
- For each stressor, what level of improvement is needed? Virginia Water Quality Standards do not contain numeric criteria for sedimentation, nutrients, and other stressors.

<u>Technical Approach</u>: Non-impaired reference streams/ watersheds will be used to identify stressors and the level of improvement needed for each stressor (i.e. TMDL endpoints)

Reference Watershed Selection

• <u>Goal</u>: Identify similar, unimpaired watersheds that can be used to develop TMDL endpoints.

• Consider using the upstream segment of the unnamed tributary (above Station XDD001.23).

Data used:

Topography Land use distribution

Soils Watershed size

Water quality data

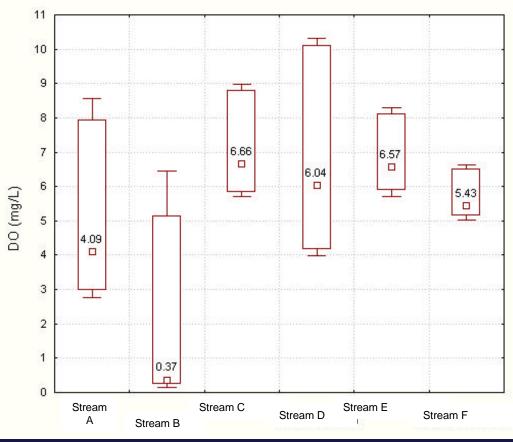
Point source inventory

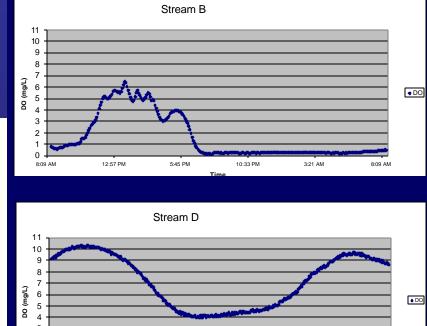
Reference Watershed Notes

- <u>Summary</u>: Non-impaired reference streams/watersheds will be used to identify stressors and to determine acceptable pollutant limits. Consider using the upstream segment for these purposes.
- This approach is needed because standards do not exist for the some potential stressors (i.e. sedimentation, nutrients, etc.)
- Pollutant limits (TMDL endpoints) will be based on the information gained from the reference watershed.

Stressor Identification Analyses

- Candidate Causes:
 - Sedimentation
 - Degraded water quality (e.g., low DO, ammonia)
 - Metals (copper)
 - Habitat impacts (riparian zone)
- Identified stressors need to be reduced to allow for improvement in the benthic community
- Data Analyses
 - Ambient Water Quality Data: Temperature, DO, BOD, sedimentation (TSS), nutrients, etc.
 - RBP habitat data (e.g. embededness)
 - 24-hour dissolved oxygen data
 - Metals and pesticides (sediment and water column data)
 - EPA toxicity tests: Measured survival/growth/reproduction of test organisms


Evaluating Candidate Causes

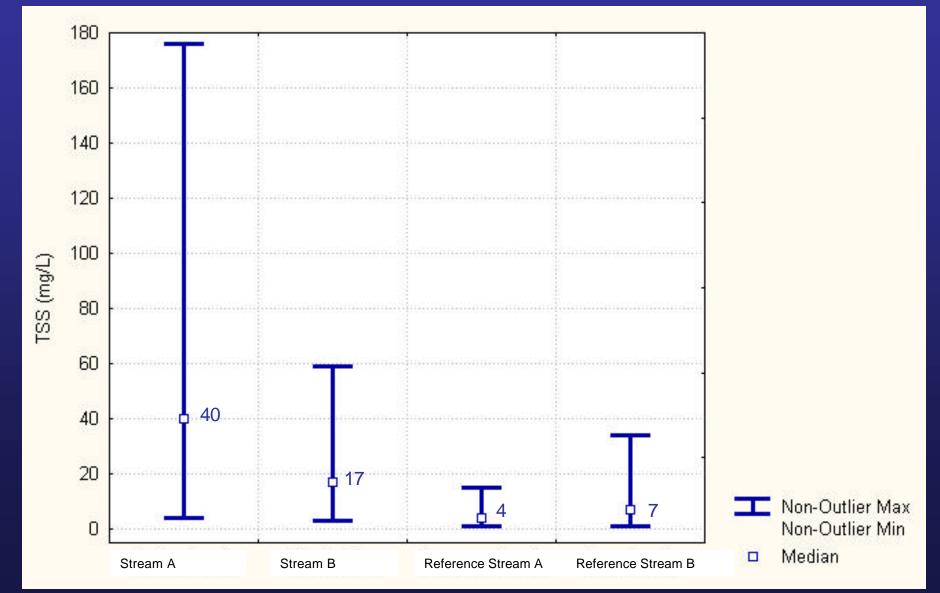

- <u>Biomonitoring</u>, water quality, toxic monitoring, and other available data can be used to evaluate candidate causes.
- Reference data define the natural or minimally-impaired condition.
- Exploring the data:
 - Plot target vs. reference data
 - Use statistics to examine cause-effect relationships
 - Review existing literature on stressors and known biological responses.
 - Compare biomonitoring metrics with reference streams. Examine the presence/absence of key taxa groups, functional feeding groups, etc.
 - "Weight of evidence" approach

Example Dissolved Oxygen Analysis

1:26 AM

6:14 AM

11:02 AM


3:50 PM

3:50 PM

Example TSS Analysis (sedimentation measure)

Watershed Modeling

- Purpose: To simulate target and reference watersheds in order to determine pollutant loadings and the necessary pollutant reductions.
- Modeling approach selected will depend on the stressors (pollutants) identified.
 - GWLF (Generalized Watershed Loading Functions) model may be used to estimate sediment and phosphorus loadings. Phosphorus reductions would be necessary if low DO conditions are caused by excessive nutrient input.
 - Other pollutants : consider other approaches
- GWLF Model attributes
 - Continuous simulation model
 - Models surface runoff using the Soil Conservation Service curve numbers
 - Based on the Universal Soil Loss Equation (USLE)
- Margin of safety: 10% of load reserved

Source Assessment

Sediment

- Soil erosion (pervious lands, esp.
 agricultural land and construction areas)
- Urban runoff (build-up and washoff of soil particles, debris, etc.)
- Streambank erosion
- Point source discharges

Phosphorus

- Soil erosion (phosphorus adsorbs to sediment particles)
- Runoff from urban and agricultural lands
- Animal waste
- Septic systems

Sediment TMDL Example (% contribution by source)

Existing

Source Category	Stream A
Row Crops	60
Pasture/Hay	20
Transitional / Barren	2
Forest	2
Water	0
Urban	10
Groundwater	0
Point Sources	6
Septic Systems	0

Existing Load (lbs/year) 11,345,488

Allocation Loads

Source Category	Stream A (% reduction)
Row Crops	45%
Pasture/Hay	45
Transitional / Barren	70
Forest	0
Water	0
Urban	37
Groundwater	0
Point Sources	0
Septic Systems	0

Overall % Reduction 45%

TMDL Load – minus MOS (lbs/year) 6,270,928

Next Steps

- Begin collecting and compiling water quality monitoring data and discharge records
- Begin analyses of water quality and discharge monitoring data
- Propose modeling approach to address point and nonpoint sources
- Schedule 1st public meeting